Jacobi Stochastic Volatility factor for the Libor Market Model
Pierre-Edouard Arrouy (),
Alexandre Boumezoued (),
Bernard Lapeyre () and
Sophian Mehalla
Additional contact information
Pierre-Edouard Arrouy: Recherche et Développement, Milliman Paris - Milliman France
Alexandre Boumezoued: Recherche et Développement, Milliman Paris - Milliman France
Bernard Lapeyre: CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique
Sophian Mehalla: CERMICS - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique - ENPC - École nationale des ponts et chaussées, MATHRISK - Mathematical Risk Handling - UPEM - Université Paris-Est Marne-la-Vallée - ENPC - École nationale des ponts et chaussées - Centre Inria de Paris - Inria - Institut National de Recherche en Informatique et en Automatique, Recherche et Développement, Milliman Paris - Milliman France
Post-Print from HAL
Abstract:
We propose a new method to efficiently price swap rates derivatives under the LIBOR Market Model with Stochastic Volatility and Displaced Diffusion (DDSVLMM). This method uses polynomial processes combined with Gram-Charlier expansion techniques. The standard pricing method for this model relies on dynamics freezing to recover an Heston-type model for which analytical formulas are available. This approach is time consuming and efficient approximations based on Gram-Charlier expansions have been recently proposed. In this article, we first discuss the fact that for a class of stochastic volatility model, including the Heston one, the classical sufficient condition ensuring the convergence of the Gram-Charlier series can not be satisfied. Then, we propose an approximating model based on Jacobi process for which we can prove the stability of the Gram-Charlier expansion. For this approximation, we have been able to prove a strong convergence toward the original model; moreover, we give an estimate of the convergence rate. We also prove a new result on the convergence of the Gram-Charlier series when the volatility factor is not bounded from below. We finally illustrate our convergence results with numerical examples.
Keywords: Stochastic Volatility; Jacobi dynamics; Polynomial processes; Gram-Charlier expansions; LIBOR Market Model (search for similar items in EconPapers)
Date: 2022-09
New Economics Papers: this item is included in nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-02468583v2
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in Finance and Stochastics, 2022, 26 (4), pp.771-823. ⟨10.1007/s00780-022-00488-5⟩
Downloads: (external link)
https://hal.science/hal-02468583v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02468583
DOI: 10.1007/s00780-022-00488-5
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().