Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies
Sokhna Dieng (),
Pierre Michel,
Abdoulaye Guindo (),
Kankoé Sallah,
El-Hadj Ba,
Badara Cisse,
Maria Patrizia Carrieri (),
Cheikh Sokhna (),
Paul Milligan and
Jean Gaudart ()
Additional contact information
Sokhna Dieng: SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale
Abdoulaye Guindo: SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale, MERIT - UMR_D 261 - Mère et enfant en milieu tropical : pathogènes, système de santé et transition épidémiologique - IRD - Institut de Recherche pour le Développement - UPCité - Université Paris Cité
Kankoé Sallah: SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale, HUPNVS - Groupe Hospitalier des Hôpitaux Universitaires Paris Nord Val de Seine [Paris]
El-Hadj Ba: VITROME - Vecteurs - Infections tropicales et méditerranéennes - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - IRBA - Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge]
Badara Cisse: IRESSEF - Institut de Recherche en Santé, de Surveillance Épidémiologique et de Formation
Maria Patrizia Carrieri: SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale
Cheikh Sokhna: VITROME - Vecteurs - Infections tropicales et méditerranéennes - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - IRBA - Institut de Recherche Biomédicale des Armées [Brétigny-sur-Orge]
Paul Milligan: LSHTM - London School of Hygiene and Tropical Medicine
Jean Gaudart: SESSTIM - U1252 INSERM - Aix Marseille Univ - UMR 259 IRD - Sciences Economiques et Sociales de la Santé & Traitement de l'Information Médicale - IRD - Institut de Recherche pour le Développement - AMU - Aix Marseille Université - INSERM - Institut National de la Santé et de la Recherche Médicale
Post-Print from HAL
Abstract:
We introduce an approach based on functional data analysis to identify patterns of malaria incidence to guide effective targeting of malaria control in a seasonal transmission area. Using functional data method, a smooth function (functional data or curve) was fitted from the time series of observed malaria incidence for each of 575 villages in west-central Senegal from 2008 to 2012. These 575 smooth functions were classified using hierarchical clustering (Ward’s method), and several different dissimilarity measures. Validity indices were used to determine the number of distinct temporal patterns of malaria incidence. Epidemiological indicators characterizing the resulting malaria incidence patterns were determined from the velocity and acceleration of their incidences over time. We identified three distinct patterns of malaria incidence: high-, intermediate-, and low-incidence patterns in respectively 2% (12/575), 17% (97/575), and 81% (466/575) of villages. Epidemiological indicators characterizing the fluctuations in malaria incidence showed that seasonal outbreaks started later, and ended earlier, in the low-incidence pattern. Functional data analysis can be used to identify patterns of malaria incidence, by considering their temporal dynamics. Epidemiological indicators derived from their velocities and accelerations, may guide to target control measures according to patterns.
Keywords: functional data analysis; time series clustering; malaria patterns; malaria dynamic (search for similar items in EconPapers)
Date: 2020-06
New Economics Papers: this item is included in nep-env
Note: View the original document on HAL open archive server: https://amu.hal.science/hal-02866666
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in International Journal of Environmental Research and Public Health, 2020, 17 (11), pp.4168. ⟨10.3390/ijerph17114168⟩
Downloads: (external link)
https://amu.hal.science/hal-02866666/document (application/pdf)
Related works:
Journal Article: Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies (2020) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-02866666
DOI: 10.3390/ijerph17114168
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().