REPPlab: An R package for detecting clusters and outliers using exploratory projection pursuit
Daniel Fischer (),
Alain Berro (),
Klaus Nordhausen and
Anne Ruiz-Gazen
Additional contact information
Daniel Fischer: LUKE - Natural Resources Institute Finland
Alain Berro: IRIT-SEPIA - Système d’exploitation, systèmes répartis, de l’intergiciel à l’architecture - IRIT - Institut de recherche en informatique de Toulouse - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse - TMBI - Toulouse Mind & Brain Institut - UT2J - Université Toulouse - Jean Jaurès - UT - Université de Toulouse - UT3 - Université Toulouse III - Paul Sabatier - UT - Université de Toulouse, UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse
Klaus Nordhausen: TU Wien - Vienna University of Technology = Technische Universität Wien
Post-Print from HAL
Abstract:
The R-package REPPlab is designed to explore multivariate data sets using one-dimensional unsupervised projection pursuit. It is useful as a preprocessing step to find clusters or as an outlier detection tool for multivariate data. Except from the packages tourr and rggobi, there is no implementation of exploratory projection pursuit tools available in R. REPPlab is an R interface for the Java program EPP-lab that implements four projection indices and three biologically inspired optimization algorithms. It also proposes new tools for plotting and combining the results and specific tools for outlier detection. The functionality of the package is illustrated through some simulations and using some real data.
Keywords: Unsupervised data analysis; Projection matrix; Tribes; Projection index; Particle swarm optimization; Kurtosis; Java; Genetic algorithms (search for similar items in EconPapers)
Date: 2021
New Economics Papers: this item is included in nep-cmp
Note: View the original document on HAL open archive server: https://hal.science/hal-03548865v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Communications in Statistics - Simulation and Computation, 2021, 50 (11), pp.3397-3419. ⟨10.1080/03610918.2019.1626880⟩
Downloads: (external link)
https://hal.science/hal-03548865v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03548865
DOI: 10.1080/03610918.2019.1626880
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().