Electricity price forecasting on the day-ahead market using machine learning
Léonard Tschora (),
Erwan Pierre,
Marc Plantevit () and
Céline Robardet ()
Additional contact information
Léonard Tschora: LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique, DM2L - Data Mining and Machine Learning - LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique
Marc Plantevit: LRE - Laboratoire de Recherche de l'EPITA - EPITA - Ecole Pour l'Informatique et les Techniques Avancées
Céline Robardet: LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique, DM2L - Data Mining and Machine Learning - LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information - UL2 - Université Lumière - Lyon 2 - ECL - École Centrale de Lyon - Université de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSA Lyon - Institut National des Sciences Appliquées de Lyon - Université de Lyon - INSA - Institut National des Sciences Appliquées - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
The price of electricity on the European market is very volatile. This is due both to its mode of production by different sources, each with its own constraints (volume of production, dependence on the weather, or production inertia), and by the difficulty of its storage. Being able to predict the prices of the next day is an important issue, to allow the development of intelligent uses of electricity. In this article, we investigate the capabilities of different machine learning techniques to accurately predict electricity prices. Specifically, we extend current state-of-the-art approaches by considering previously unused predictive features such as price histories of neighboring countries. We show that these features significantly improve the quality of forecasts, even in the current period when sudden changes are occurring. We also develop an analysis of the contribution of the different features in model prediction using Shap values, in order to shed light on how models make their prediction and to build user confidence in models.
Date: 2022-05
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ene
Note: View the original document on HAL open archive server: https://hal.science/hal-03621974
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (24)
Published in Applied Energy, 2022, 313, pp.118752. ⟨10.1016/j.apenergy.2022.118752⟩
Downloads: (external link)
https://hal.science/hal-03621974/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03621974
DOI: 10.1016/j.apenergy.2022.118752
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().