A Closed-form Alternative Estimator for GLM with Categorical Explanatory Variables
Alexandre Brouste (),
Christophe Dutang () and
Tom Rohmer ()
Additional contact information
Alexandre Brouste: LMM - Laboratoire Manceau de Mathématiques - UM - Le Mans Université
Christophe Dutang: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Tom Rohmer: GenPhySE - Génétique Physiologie et Systèmes d'Elevage - ENVT - Ecole Nationale Vétérinaire de Toulouse - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse - ENSAT - École nationale supérieure agronomique de Toulouse - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse - INP - PURPAN - Ecole d'Ingénieurs de Purpan - Toulouse INP - Institut National Polytechnique (Toulouse) - UT - Université de Toulouse - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Post-Print from HAL
Abstract:
The parameters of generalized linear models (GLMs) are usually estimated by the maximum likelihood estimator (MLE) which is known to be asymptotically efficient. But the MLE is computed using a Newton-Raphson-type algorithm which is time-consuming for a large number of variables or modalities, or a large sample size. An alternative closed-form estimator is proposed in this paper in the case of categorical explanatory variables. Asymptotic properties of the alternative estimator is studied. The performances in terms of both computation time and asymptotic variance of the proposed estimator are compared with the MLE for a Gamma distributed GLM.
Keywords: Regression models; explicit estimators; categorical explanatory variables; GLM; asymptotic distribution (search for similar items in EconPapers)
Date: 2022-06-07
New Economics Papers: this item is included in nep-ecm
Note: View the original document on HAL open archive server: https://hal.science/hal-03689206v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Communications in Statistics - Simulation and Computation, inPress, pp.1-17. ⟨10.1080/03610918.2022.2076870⟩
Downloads: (external link)
https://hal.science/hal-03689206v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03689206
DOI: 10.1080/03610918.2022.2076870
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().