EconPapers    
Economics at your fingertips  
 

Unbiasing and robustifying implied volatility calibration in a cryptocurrency market with large bid-ask spreads and missing quotes

Mnacho Echenim (mnacho.echenim@imag.fr), Emmanuel Gobet (emmanuel.gobet@polytechnique.edu) and Anne-Claire Maurice (anne-claire.maurice@kaiko.com)
Additional contact information
Mnacho Echenim: LIG - Laboratoire d'Informatique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, CAPP - Calculs algorithmes programmes et preuves - LIG - Laboratoire d'Informatique de Grenoble - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique

Post-Print from HAL

Abstract: We design a novel calibration procedure that is designed to handle the specific characteristics of options on cryptocurrency markets, namely large bid-ask spreads and the possibility of missing or incoherent prices in the considered data sets. We show that this calibration procedure is significantly more robust and accurate than the standard one based on trade and mid-prices.

Keywords: implied volatility; calibration; bid-ask spread; missing data; data augmentation (search for similar items in EconPapers)
Date: 2023-07-20
New Economics Papers: this item is included in nep-pay and nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-03715921v1
References: Add references at CitEc
Citations:

Published in Quantitative Finance, 2023, 23 (9), pp.1285-1304. ⟨10.1080/14697688.2023.2229022⟩

Downloads: (external link)
https://hal.science/hal-03715921v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03715921

DOI: 10.1080/14697688.2023.2229022

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).

 
Page updated 2024-12-28
Handle: RePEc:hal:journl:hal-03715921