EconPapers    
Economics at your fingertips  
 

Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling

Michaël Allouche (), Emmanuel Gobet (), Clara Lage () and Edwin Mangin ()
Additional contact information
Michaël Allouche: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Clara Lage: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Edwin Mangin: BNPP

Post-Print from HAL

Abstract: Rating Migration Matrix is a crux to assess credit risks. Modeling and predicting these matrices are then an issue of great importance for risk managers in any financial institution. As a challenger to usual parametric modeling approaches, we propose a new structured dictionary learning model with auto-regressive regularization that is able to meet key expectations and constraints: small amount of data, fast evolution in time of these matrices, economic interpretability of the calibrated model. To show the model applicability, we present a numerical test with real data. The source code and the data are available at https://github.com/michael-allouche/ dictionary-learning-RMM.git for the sake of reproducibility of our research.

Keywords: Rating Migration Matrix; Dictionary learning; auto-regressive modeling; interpretability (search for similar items in EconPapers)
Date: 2024-01-10
New Economics Papers: this item is included in nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-03715954v2
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Computational Statistics, 2024, ⟨10.1007/s00180-023-01449-y⟩

Downloads: (external link)
https://hal.science/hal-03715954v2/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03715954

DOI: 10.1007/s00180-023-01449-y

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-03715954