Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling
Michaël Allouche (),
Emmanuel Gobet (),
Clara Lage () and
Edwin Mangin ()
Additional contact information
Michaël Allouche: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Clara Lage: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Edwin Mangin: BNPP
Post-Print from HAL
Abstract:
Rating Migration Matrix is a crux to assess credit risks. Modeling and predicting these matrices are then an issue of great importance for risk managers in any financial institution. As a challenger to usual parametric modeling approaches, we propose a new structured dictionary learning model with auto-regressive regularization that is able to meet key expectations and constraints: small amount of data, fast evolution in time of these matrices, economic interpretability of the calibrated model. To show the model applicability, we present a numerical test with real data. The source code and the data are available at https://github.com/michael-allouche/ dictionary-learning-RMM.git for the sake of reproducibility of our research.
Keywords: Rating Migration Matrix; Dictionary learning; auto-regressive modeling; interpretability (search for similar items in EconPapers)
Date: 2024-01-10
New Economics Papers: this item is included in nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-03715954v2
References: View references in EconPapers View complete reference list from CitEc
Citations:
Published in Computational Statistics, 2024, ⟨10.1007/s00180-023-01449-y⟩
Downloads: (external link)
https://hal.science/hal-03715954v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03715954
DOI: 10.1007/s00180-023-01449-y
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().