Deep learning of Value at Risk through generative neural network models: the case of the Variational Auto Encoder
Pierre Brugière () and
Gabriel Turinici ()
Additional contact information
Pierre Brugière: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Gabriel Turinici: CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - Université Paris Dauphine-PSL - PSL - Université Paris Sciences et Lettres - CNRS - Centre National de la Recherche Scientifique
Post-Print from HAL
Abstract:
We present in this paper a method to compute, using generative neural networks, an estimator of the "Value at Risk" for a nancial asset. The method uses a Variational Auto Encoder with a 'energy' (a.k.a. Radon- Sobolev) kernel. The result behaves according to intuition and is in line with more classical methods.
Date: 2023-04-24
New Economics Papers: this item is included in nep-big, nep-cmp, nep-net and nep-rmg
Note: View the original document on HAL open archive server: https://hal.science/hal-03880381v1
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in MethodX, 2023, 10, pp.102192. ⟨10.1016/j.mex.2023.102192⟩
Downloads: (external link)
https://hal.science/hal-03880381v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-03880381
DOI: 10.1016/j.mex.2023.102192
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().