EconPapers    
Economics at your fingertips  
 

Swarm gradient dynamics for global optimization: the mean-field limit case

Jérôme Bolte, Laurent Miclo () and Stéphane Villeneuve
Additional contact information
Laurent Miclo: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Stéphane Villeneuve: TSM - Toulouse School of Management Research - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse - CNRS - Centre National de la Recherche Scientifique - TSM - Toulouse School of Management - UT Capitole - Université Toulouse Capitole - UT - Université de Toulouse

Post-Print from HAL

Abstract: Using jointly geometric and stochastic reformulations of nonconvex problems and exploiting a Monge–Kantorovich (or Wasserstein) gradient system formulation with vanishing forces, we formally extend the simulated annealing method to a wide range of global optimization methods. Due to the built-in combination of a gradient-like strategy and particle interactions, we call them swarm gradient dynamics. As in the original paper by Holley–Kusuoka–Stroock, a functional inequality is the key to the existence of a schedule that ensures convergence to a global minimizer. One of our central theoretical contributions is proving such an inequality for one-dimensional compact manifolds. We conjecture that the inequality holds true in a much broader setting. Additionally, we describe a general method for global optimization that highlights the essential role of functional inequalities la Łojasiewicz.

Date: 2024
Note: View the original document on HAL open archive server: https://hal.science/hal-04552722v1
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Mathematical Programming, 2024, 205, pp.661-701. ⟨10.1007/s10107-023-01988-8⟩

Downloads: (external link)
https://hal.science/hal-04552722v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:hal-04552722

DOI: 10.1007/s10107-023-01988-8

Access Statistics for this paper

More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:journl:hal-04552722