Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics
Camila Epprecht (),
Dominique Guegan (),
Álvaro Veiga () and
Joel Correa da Rosa ()
Additional contact information
Camila Epprecht: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PUC-Rio - Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil]
Dominique Guegan: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique
Álvaro Veiga: PUC-Rio - Pontifícia Universidade Católica do Rio de Janeiro [Brasil] = Pontifical Catholic University of Rio de Janeiro [Brazil] = Université catholique pontificale de Rio de Janeiro [Brésil]
Joel Correa da Rosa: MSSM - Icahn School of Medicine at Mount Sinai [New York]
Post-Print from HAL
Abstract:
In this paper we compare two approaches of model selection methods for linear regression models: classical approach - Autometrics (automatic general-to-specific selection) — and statistical learning - LASSO (ℓ1-norm regularization) and adaLASSO (adaptive LASSO). In a simulation experiment, considering a simple setup with orthogonal candidate variables and independent data, we compare the performance of the methods concerning predictive power (out-of-sample forecast), selection of the correct model (variable selection) and parameter estimation. The case where the number of candidate variables exceeds the number of observation is considered as well. Finally, in an application using genomic data from a highthroughput experiment we compare the predictive power of the methods to predict epidermal thickness in psoriatic patients.
Keywords: model selection; general-to-specific; adaptive LASSO; sparse models; Monte Carlo simulation; genetic data (search for similar items in EconPapers)
Date: 2017-10
New Economics Papers: this item is included in nep-for
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00917797v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Published in 2017
Downloads: (external link)
https://shs.hal.science/halshs-00917797v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:journl:halshs-00917797
Access Statistics for this paper
More papers in Post-Print from HAL
Bibliographic data for series maintained by CCSD ().