Short-time asymptotics for marginal distributions of semimartingales
Amel Bentata () and
Rama Cont ()
Additional contact information
Amel Bentata: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Rama Cont: LPMA - Laboratoire de Probabilités et Modèles Aléatoires - UPMC - Université Pierre et Marie Curie - Paris 6 - UPD7 - Université Paris Diderot - Paris 7 - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
We study the short-time asymptotics of conditional expectations of smooth and non-smooth functions of a (discontinuous) Ito semimartingale; we compute the leading term in the asymptotics in terms of the local characteristics of the semimartingale. We derive in particular the asymptotic behavior of call options with short maturity in a semimartingale model: whereas the behavior of out-of-the-money options is found to be linear in time, the short time asymptotics of at-the-money options is shown to depend on the fine structure of the semimartingale.
Keywords: semimartingale; short-time asymptotics; marginal distribution; short maturity asymptotics; Levy process; option pricing (search for similar items in EconPapers)
Date: 2012
New Economics Papers: this item is included in nep-ecm and nep-ets
Note: View the original document on HAL open archive server: https://hal.science/hal-00667112v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Published in 2012
Downloads: (external link)
https://hal.science/hal-00667112v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-00667112
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().