Rare event simulation related to financial risks: efficient estimation and sensitivity analysis
Ankush Agarwal (),
Stefano de Marco,
Emmanuel Gobet () and
Gang Liu
Additional contact information
Ankush Agarwal: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Stefano de Marco: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Gang Liu: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
In this paper, we develop the reversible shaking transformation methods on path space of Gobet and Liu [GL15] to estimate the rare event statistics arising in different financial risk settings which are embedded within a unified framework of isonormal Gaussian process. Namely, we combine splitting methods with both Interacting Particle System (IPS) technique and ergodic transformations using Parallel-One-Path (POP) estimators. We also propose an adaptive version for the POP method and prove its convergence. We demonstrate the application of our methods in various examples which cover usual semi-martingale stochastic models (not necessarily Markovian) driven by Brownian motion and, also, models driven by fractional Brownian motion (non semi-martingale) to address various financial risks. Interestingly, owing to the Gaussian process framework, our methods are also able to efficiently handle the important problem of sensitivities of rare event statistics with respect to the model parameters.
Keywords: Rare event; Monte Carlo simulation; Markov chains; ergodic properties; interacting particle systems; Malliavin calculus; sensitivity analysis; fractional Brownian motion; credit default swaps; model misspecification; deep out-of-the-money options (search for similar items in EconPapers)
Date: 2017-12-28
New Economics Papers: this item is included in nep-ecm and nep-rmg
Note: View the original document on HAL open archive server: https://polytechnique.hal.science/hal-01219616v2
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://polytechnique.hal.science/hal-01219616v2/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01219616
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().