EconPapers    
Economics at your fingertips  
 

INVARIANCE TIMES *

Stéphane Crépey (stephane.crepey@univ-evry.fr) and Shiqi Song (shiqi.song@univ-evry.fr)
Additional contact information
Stéphane Crépey: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique
Shiqi Song: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique

Working Papers from HAL

Abstract: On a probability space $(\Omega,\mathcal{A},\mathbb{Q})$ we consider two filtrations $\mathbb{F}\subset \mathbb{G}$ and a $\mathbb{G}$ stopping time $\theta$ such that the $\mathbb{G}$ predictable processes coincide with $\mathbb{F}$ predictable processes on $(0,\theta]$. In this setup it is well-known that, for any $\mathbb{F}$ semimartingale $X$, the process $X^{\theta-}$ ($X$ stopped ``right before $\theta$'') is a $\mathbb{G}$ semimartingale. Given a positive constant $T$, we call $\theta$ an invariance time if there exists a probability measure $\mathbb{P}$ equivalent to $\mathbb{Q}$ on $\mathcal{F}_T$ such that, for any $(\mathbb{F},\mathbb{P})$ local martingale $X$, $X^{\theta-}$ is a $(\mathbb{G},\mathbb{Q})$ local martingale. We characterize invariance times in terms of the $(\mathbb{F},\mathbb{Q})$ Az\'ema supermartingale of $\theta$ and we derive a mild and tractable invariance time sufficiency condition. We discuss invariance times in mathematical finance and BSDE applications.

Keywords: Random time; enlargement of filtration; measure change; mathematical finance (search for similar items in EconPapers)
Date: 2017-02-03
Note: View the original document on HAL open archive server: https://hal.science/hal-01455414v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://hal.science/hal-01455414v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01455414

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD (hal@ccsd.cnrs.fr).

 
Page updated 2025-03-24
Handle: RePEc:hal:wpaper:hal-01455414