A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents
Pierre Gosselin (),
Aïleen Lotz and
Marc Wambst ()
Additional contact information
Pierre Gosselin: IF - Institut Fourier - CNRS - Centre National de la Recherche Scientifique - UGA [2016-2019] - Université Grenoble Alpes [2016-2019]
Marc Wambst: IRMA - Institut de Recherche Mathématique Avancée - UNISTRA - Université de Strasbourg - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
This paper presents an analytical treatment of economic systems with an arbitrary number of agents that keeps track of the systems' interactions and agent's complexity. The formalism does not seek to aggregate agents: it rather replaces the standard optimization approach by a probabilistic description of the agents' behaviors and of the whole system. This is done in two distinct steps. A first step considers an interacting system involving an arbitrary number of agents, where each agent's utility function is subject to unpredictable shocks. In such a setting, individual optimization problems need not be resolved. Each agent is described by a time-dependent probability distribution centered around its utility optimum. The whole system of agents is thus defined by a composite probability depending on time, agents' interactions, relations of strategic dominations, agents' information sets and expectations. This setting allows for heterogeneous agents with different utility functions, strategic domination relations, heterogeneity of information, etc. This dynamic system is described by a path integral formalism in an abstract space – the space of the agents' actions –and is very similar to a statistical physics or quantum mechanics system. We show that this description, applied to the space of agents' actions, reduces to the usual optimization results in simple cases. Compared to the standard optimization, such a description markedly eases the treatment of a system with a small number of agents. It becomes however useless for a large number of agents. In a second step therefore, we show that, for a large number of agents, the previous description is equivalent to a more compact description in terms of field theory. This yields an analytical, although approximate, treatment of the system. This field theory does not model an aggregation of microeconomic systems in the usual sense, but rather describes an environment of a large number of interacting agents. From this description, various phases or equilibria may be retrieved, as well as the individual agents' behaviors, along with their interaction with the environment. This environment does not necessarily have a unique or stable equilibrium and allows to reconstruct aggregate quantities without reducing the system to mere relations between aggregates. For illustrative purposes, this paper studies several economic models with a large number of agents, some presenting various phases. These are models of consumer/producer agents facing binding constraints , business cycle models, and psycho-economic models of interacting and possibly strategic agents.
Keywords: interacting agents; strategical advantage; phase transition; path integrals; business cycle; aggregation; budget constraint; Green function; emergence; integrated structures; multi-agent model; statistical field theory; forward-looking behavior; effective action; non trivial vacuum; heterogeneous agents; correlation functions; psycho-economic models (search for similar items in EconPapers)
Date: 2017-06-28
New Economics Papers: this item is included in nep-hme and nep-upt
Note: View the original document on HAL open archive server: https://hal.science/hal-01549586v2
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://hal.science/hal-01549586v2/document (application/pdf)
Related works:
Working Paper: A Path Integral Approach to Interacting Economic Systems with Multiple Heterogeneous Agents (2017) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01549586
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().