The Sustainable Black-Scholes Equations
Yannick Armenti (),
Stéphane Crépey () and
Chao Zhou ()
Additional contact information
Yannick Armenti: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique
Stéphane Crépey: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - INRA - Institut National de la Recherche Agronomique - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - CNRS - Centre National de la Recherche Scientifique
Chao Zhou: Department of Mathematics [Singapore] - NUS - National University of Singapore
Working Papers from HAL
Abstract:
In incomplete markets, a basic Black-Scholes perspective has to be complemented by the valuation of market imperfections. Otherwise this results in Black-Scholes Ponzi schemes, such as the ones at the core of the last global financial crisis, where always more derivatives need to be issued for remunerating the capital attracted by the already opened positions. In this paper we consider the sustainable Black-Scholes equations that arise for a portfolio of options if one adds to their trade additive Black-Scholes price, on top of a nonlinear funding cost, the cost of remunerating at a hurdle rate the residual risk left by imperfect hedging. We assess the impact of model uncertainty in this setup.
Keywords: Market incompleteness; cost of capital (KVA); cost of funding (FVA); model risk; volatility uncertainty; optimal martingale transport (search for similar items in EconPapers)
Date: 2018-04-11
New Economics Papers: this item is included in nep-rmg and nep-sea
Note: View the original document on HAL open archive server: https://hal.science/hal-01764397v1
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-01764397v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-01764397
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().