EconPapers    
Economics at your fingertips  
 

Discretization and Machine Learning Approximation of BSDEs with a Constraint on the Gains-Process

Idris Kharroubi (), Thomas Lim () and Xavier Warin ()
Additional contact information
Idris Kharroubi: LPSM (UMR_8001) - Laboratoire de Probabilités, Statistique et Modélisation - UPD7 - Université Paris Diderot - Paris 7 - SU - Sorbonne Université - CNRS - Centre National de la Recherche Scientifique
Thomas Lim: LaMME - Laboratoire de Mathématiques et Modélisation d'Evry - ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, ENSIIE - Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise
Xavier Warin: EDF - EDF

Working Papers from HAL

Abstract: We study the approximation of backward stochastic differential equations (BSDEs for short) with a constraint on the gains process. We first discretize the constraint by applying a so-called facelift operator at times of a grid. We show that this discretely constrained BSDE converges to the continuously constrained one as the mesh grid converges to zero. We then focus on the approximation of the discretely constrained BSDE. For that we adopt a machine learning approach. We show that the facelift can be approximated by an optimization problem over a class of neural networks under constraints on the neural network and its derivative. We then derive an algorithm converging to the discretely constrained BSDE as the number of neurons goes to infinity. We end by numerical experiments. Mathematics Subject Classification (2010): 65C30, 65M75, 60H35, 93E20, 49L25.

Keywords: Constrainted BSDEs; discrete-time approximation; neural networks approxi- mation; facelift transformation (search for similar items in EconPapers)
Date: 2020-02-05
New Economics Papers: this item is included in nep-big and nep-cmp
Note: View the original document on HAL open archive server: https://hal.science/hal-02468354v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://hal.science/hal-02468354v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-02468354

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-03-19
Handle: RePEc:hal:wpaper:hal-02468354