EconPapers    
Economics at your fingertips  
 

Statistical error bounds for weighted mean and median, with application to robust aggregation of cryptocurrency data

Michaël Allouche (), Mnacho Echenim (), Emmanuel Gobet () and Anne-Claire Maurice ()
Additional contact information
Michaël Allouche: Kaiko [Paris]
Mnacho Echenim: LIG - Laboratoire d'Informatique de Grenoble - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes, CAPP - Calculs algorithmes programmes et preuves - LIG - Laboratoire d'Informatique de Grenoble - Inria - Institut National de Recherche en Informatique et en Automatique - CNRS - Centre National de la Recherche Scientifique - UGA - Université Grenoble Alpes - Grenoble INP - Institut polytechnique de Grenoble - Grenoble Institute of Technology - UGA - Université Grenoble Alpes
Emmanuel Gobet: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Anne-Claire Maurice: Kaiko [Paris]

Working Papers from HAL

Abstract: We study price aggregation methodologies applied to crypto-currency prices with quotations fragmented on different platforms. An intrinsic difficulty is that the price returns and volumes are heavytailed, with many outliers, making averaging and aggregation challenging. While conventional methods rely on Volume-Weighted Average Prices (called VWAPs), or Volume-Weighted Median prices (called VWMs), we develop a new Robust Weighted Median (RWM) estimator that is robust to price and volume outliers. Our study is based on new probabilistic concentration inequalities for weighted means and weighted quantiles under different tail assumptions (heavy tails, sub-gamma tails, sub-Gaussian tails). This justifies that fluctuations of VWAP and VWM are statistically important given the heavy-tailed properties of volumes and/or prices. We show that our RWM estimator overcomes this problem and also satisfies all the desirable properties of a price aggregator. We illustrate the behavior of RWM on synthetic data (within a parametric model close to real data): our estimator achieves a statistical accuracy twice as good as its competitors, and also allows to recover realized volatilities in a very accurate way. Tests on real data are also performed and confirm the good behavior of the estimator on various use cases.

Keywords: robust aggregation; weighted mean and quantile estimation; heavy tails; concentration inequalities; outliers (search for similar items in EconPapers)
Date: 2024-12-17
New Economics Papers: this item is included in nep-des, nep-ecm and nep-pay
Note: View the original document on HAL open archive server: https://hal.science/hal-04017151v2
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-04017151v2/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-04017151

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-04-07
Handle: RePEc:hal:wpaper:hal-04017151