On the existence of Pairwise stable weighted networks
Philippe Bich () and
Lisa Morhaim
Additional contact information
Philippe Bich: CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École nationale des ponts et chaussées - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Lisa Morhaim: CRED - Centre de Recherche en Economie et Droit - UP2 - Université Panthéon-Assas
Working Papers from HAL
Abstract:
We provide the existence of pairwise stable weighted networks under assumptions similar to Nash theorem. In particular, contrarily to the case of unweighted networks, the existence of closed improving cycles does not prevent the existence of Pairwise stable weighted networks. Then, we extend our existence result, allowing payoffs to depend on some game-theoretic strategies. Many applications are given.
Keywords: Pairwise Stable Network; Weighted Network (search for similar items in EconPapers)
Date: 2017-07-19
New Economics Papers: this item is included in nep-gth
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01564591v1
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://shs.hal.science/halshs-01564591v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:halshs-01564591
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().