Adaptive estimation in the nonparametric random coefficients binary choice model by needlet thresholding
Eric Gautier and
Erwan Le Pennec ()
Additional contact information
Erwan Le Pennec: CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique, XPOP - Modélisation en pharmacologie de population - CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique - Centre Inria de l'Institut Polytechnique de Paris - Centre Inria de Saclay - Inria - Institut National de Recherche en Informatique et en Automatique
Working Papers from HAL
Abstract:
In the random coefficients binary choice model, a binary variable equals 1 iff an index $X^\top\beta$ is positive. The vectors $X$ and $\beta$ are independent and belong to the sphere $\mathbb{S}^{d-1}$ in $\mathbb{R}^{d}$. We prove lower bounds on the minimax risk for estimation of the density $f_{\beta}$ over Besov bodies where the loss is a power of the $L^p(\mathbb{S}^{d-1})$ norm for $1\le p\le \infty$. We show that a hard thresholding estimator based on a needlet expansion with data-driven thresholds achieves these lower bounds up to logarithmic factors.
Keywords: Discrete choice models; minimax rate optimality; needlets; random coefficients; data-driven thresholding; adaptation; inverse problems (search for similar items in EconPapers)
Date: 2017-11-28
New Economics Papers: this item is included in nep-dcm and nep-ecm
Note: View the original document on HAL open archive server: https://inria.hal.science/inria-00601274v4
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://inria.hal.science/inria-00601274v4/document (application/pdf)
Related works:
Working Paper: Adaptive Estimation in the Nonparametric Random Coefficients Binary Choice Model by Needlet Thresholding (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:inria-00601274
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().