EconPapers    
Economics at your fingertips  
 

A Novel Optimized Nonlinear Grey Bernoulli Model for Forecasting China’s GDP

Wen-Ze Wu, Tao Zhang and Chengli Zheng

Complexity, 2019, vol. 2019, 1-10

Abstract:

The nonlinear grey Bernoulli model, abbreviated as NGBM(1,1), has been successfully applied to control, prediction, and decision-making fields, especially in the prediction of nonlinear small sample time series. However, there are still some problems in improving the prediction accuracy of NGBM(1,1). In this paper, we propose a novel optimized nonlinear grey Bernoulli model for forecasting Chinaʼs GDP. In the new model, the structure and parameters of NGBM(1,1) are optimized simultaneously. Especially, the latest item of first-order accumulative generating operator (1-AGO) sequence is taken as the initial condition, then background value is reconstructed by optimizing weights of neighbor values in 1-AGO sequence, which is based on minimizing the sum of absolute percentage errors, and finally, we establish the new model based on the rolling mechanism. Prediction accuracy of the proposed model is investigated through some simulations and a real example application, and the proposed model is applied to forecast the annual GDP in China from 2019 to 2023.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/1731262.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/1731262.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1731262

DOI: 10.1155/2019/1731262

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:1731262