EconPapers    
Economics at your fingertips  
 

Model Predictive Control of Robotic Grinding Based on Deep Belief Network

Shouyan Chen, Tie Zhang, Yanbiao Zou and Meng Xiao

Complexity, 2019, vol. 2019, 1-12

Abstract:

Considering the influence of rigid-flexible dynamics on robotic grinding process, a model predictive control approach based on deep belief network (DBN) is proposed to control robotic grinding deformation. The rigid-flexible coupling dynamics of robotic grinding is first established, on the basis of which a robotic grinding prediction model is constructed to predict the change of robotic grinding status and perform feed-forward control. A rolling optimization formula derived from the energy function is also established to optimize control output in real time and perform feedback control. As the accurately model parameters are hard to obtain, a deep belief network is constructed to obtain the parameters of robotic grinding predictive model. Simulation and experimental results indicate that the proposed model predictive control approach can predict abrupt change of robotic grinding status caused by deformation and perform a feed-forward and feedback based combination control, reducing control overflow and system oscillation caused by inaccurate feedback control.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/1891365.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/1891365.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:1891365

DOI: 10.1155/2019/1891365

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:1891365