Hybrid Genetic Grey Wolf Algorithm for Large-Scale Global Optimization
Qinghua Gu,
Xuexian Li and
Song Jiang
Complexity, 2019, vol. 2019, 1-18
Abstract:
Most real-world optimization problems tackle a large number of decision variables, known as Large-Scale Global Optimization (LSGO) problems. In general, the metaheuristic algorithms for solving such problems often suffer from the “curse of dimensionality.” In order to improve the disadvantage of Grey Wolf Optimizer when solving the LSGO problems, three genetic operators are embedded into the standard GWO and a Hybrid Genetic Grey Wolf Algorithm (HGGWA) is proposed. Firstly, the whole population using Opposition-Based Learning strategy is initialized. Secondly, the selection operation is performed by combining elite reservation strategy. Then, the whole population is divided into several subpopulations for cross-operation based on dimensionality reduction and population partition in order to increase the diversity of the population. Finally, the elite individuals in the population are mutated to prevent the algorithm from falling into local optimum. The performance of HGGWA is verified by ten benchmark functions, and the optimization results are compared with WOA, SSA, and ALO. On CEC’2008 LSGO problems, the performance of HGGWA is compared against several state-of-the-art algorithms, CCPSO2, DEwSAcc, MLCC, and EPUS-PSO. Simulation results show that the HGGWA has been greatly improved in convergence accuracy, which proves the effectiveness of HGGWA in solving LSGO problems.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/2653512.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/2653512.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2653512
DOI: 10.1155/2019/2653512
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().