A Novel Approach to Face Verification Based on Second-Order Face-Pair Representation
Qiang Hua,
Chunru Dong and
Feng Zhang
Complexity, 2018, vol. 2018, 1-10
Abstract:
Face representation and matching are two essential issues in face verification task. Various approaches have been proposed focusing on these two issues. However, few of them addressed the joint optimal solutions of these two issues in a unified framework. In this paper, we present a second-order face representation method for face pair and a unified face verification framework, in which the feature extractors and the subsequent binary classification model design can be selected flexibly. Our contributions can be summarized in the following aspects. First, a novel face-pair representation method that employs the second-order statistical property of the face pairs is proposed, which retains more information compared to the existing methods. Second, a flexible binary classification model, which differs from the conventionally used metric learning, is constructed based on the new face-pair representation. Finally, we verify that our proposed face-pair representation can benefit from large training datasets. All the experiments are carried out on Labeled Face in the Wild (LFW) to verify the algorithm’s effectiveness against challenging uncontrolled conditions.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/2861695.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/2861695.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:2861695
DOI: 10.1155/2018/2861695
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().