EconPapers    
Economics at your fingertips  
 

Forecasting the Short-Term Traffic Flow in the Intelligent Transportation System Based on an Inertia Nonhomogenous Discrete Gray Model

Huiming Duan, Xinping Xiao and Lingling Pei

Complexity, 2017, vol. 2017, 1-16

Abstract:

The traffic-flow system has basic dynamic characteristics. This feature provides a theoretical basis for constructing a reasonable and effective model for the traffic-flow system. The research on short-term traffic-flow forecasting is of wide interest. Its results can be applied directly to advanced traffic information systems and traffic management, providing real-time and effective traffic information. According to the dynamic characteristics of traffic-flow data, this paper extends the mechanical properties, such as distance, acceleration, force combination, and decomposition, to the traffic-flow data vector. According to the mechanical properties of the data, this paper proposes four new models of structural parameters and component parameters, inertia nonhomogenous discrete gray models (referred to as INDGM), and analyzes the important properties of the model. This model examines the construction of the inertia nonhomogenous discrete gray model from the mechanical properties of the data, explaining the classic NDGM modeling mechanism in the meantime. Finally, this paper analyzes the traffic-flow data of Whitemud Drive in Canada and studies the relationship between the inertia model and the traffic-flow state according to the data analysis of the traffic-flow state. A simulation accuracy and prediction accuracy of up to 0.0248 and 0.0273, respectively, are obtained.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/3515272.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/3515272.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:3515272

DOI: 10.1155/2017/3515272

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:3515272