Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network
Jinman He,
Fangqi Chen and
Qinsheng Bi
Complexity, 2019, vol. 2019, 1-15
Abstract:
This paper is concerned with the quasi-matrix and quasi-inverse-matrix projective synchronization between two nonidentical delayed fractional order neural networks subjected to external disturbances. First, the definitions of quasi-matrix and quasi-inverse-matrix projective synchronization are given, respectively. Then, in order to realize two types of synchronization for delayed and disturbed fractional order neural networks, two sufficient conditions are established and proved by constructing appropriate Lyapunov function in combination with some fractional order differential inequalities. And their estimated synchronization error bound is obtained, which can be reduced to the required standard as small as what we need by selecting appropriate control parameters. Because of the generality of the proposed synchronization, choosing different projective matrix and controllers, the two synchronization types can be reduced to some common synchronization types for delayed fractional order neural networks, like quasi-complete synchronization, quasi-antisynchronization, quasi-projective synchronization, quasi-inverse projective synchronization, quasi-modified projective synchronization, quasi-inverse-modified projective synchronization, and so on. Finally, as applications, two numerical examples with simulations are employed to illustrate the efficiency and feasibility of the new synchronization analysis.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/4823709.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/4823709.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:4823709
DOI: 10.1155/2019/4823709
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().