Disturbance Observer-Based Robot End Constant Contact Force-Tracking Control
Tie Zhang and
Xiaohong Liang
Complexity, 2019, vol. 2019, 1-20
Abstract:
A disturbance observer-based hybrid sliding mode impedance control method is proposed in this paper, which is able to achieve robot end constant contact force-tracking control without force/torque sensors. The method requires only the values of joint torque, joint angle, and joint angular velocity, which are converted by robot servo motor signals, to implement the control. The control scheme consists of two parts: one is a disturbance observer and the other is a hybrid sliding mode impedance controller. The disturbance observer, which takes robot internal signals mentioned above as the inputs to estimate the robot end contact force, is designed based on generalized momentum, thus improving the estimation accuracy. The hybrid sliding mode impedance controller, which uses the values estimated by the disturbance observer and the robot internal signals as the inputs to calculate the corresponding position adjustment, integrates both the impedance control and sliding mode control, thus improving the force-tracking performance and robustness. Experimental results show that the proposed disturbance observer-based hybrid sliding mode impedance control method possesses high control precision.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/5802453.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/5802453.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:5802453
DOI: 10.1155/2019/5802453
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().