Contagion Processes on Time-Varying Networks with Homophily-Driven Group Interactions
Li Ding and
Ping Hu
Complexity, 2019, vol. 2019, 1-13
Abstract:
The complicated interaction patterns among heterogeneous individuals have a profound impact on the contagion process in the networks. In recent years, there has been increasing evidence for the emergence of many-body interactions between two or more nodes in a wide range of biological and social networks. To encode these multinode interactions explicitly, the simplicial complex is now a popular alternative to simple networks. Meanwhile, the time-varying network has been acknowledged as a key ingredient of the contagion process. In this paper, we consider the connectivity pattern of networks affected by the homophily effect associated with individual attributes and investigate the impact of homophily-driven group interactions on the contagion process in temporal networks. The simplicial complex modeling framework is adopted to capture stochastic interactions between passively selected nodes in the paradigm of activity-driven networks. We study the evolution of infection and the epidemic threshold of the contagion process by both analytical and numerical methods. Our results on statistical topological properties of instantaneous network may shed light on accurately characterizing the evolution curve of infection. Furthermore, we show the impact of the homophily-driven interaction pattern on the epidemic threshold, which generalizes the existing results on both the paradigmatic activity-driven network and the simplicial activity-driven network.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/7130468.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/7130468.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7130468
DOI: 10.1155/2019/7130468
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().