EconPapers    
Economics at your fingertips  
 

Solving of Two-Dimensional Unsteady-State Heat-Transfer Inverse Problem Using Finite Difference Method and Model Prediction Control Method

Shoubin Wang and Rui Ni

Complexity, 2019, vol. 2019, 1-12

Abstract:

The Inverse Heat Conduction Problem (IHCP) refers to the inversion of the internal characteristics or thermal boundary conditions of a heat transfer system by using other known conditions of the system and according to some information that the system can observe. It has been extensively applied in the fields of engineering related to heat-transfer measurement, such as the aerospace, atomic energy technology, mechanical engineering, and metallurgy. The paper adopts Finite Difference Method (FDM) and Model Predictive Control Method (MPCM) to study the inverse problem in the third-type boundary heat-transfer coefficient involved in the two-dimensional unsteady heat conduction system. The residual principle is introduced to estimate the optimized regularization parameter in the model prediction control method, thereby obtaining a more precise inversion result. Finite difference method (FDM) is adopted for direct problem to calculate the temperature value in various time quanta of needed discrete point as well as the temperature field verification by time quantum, while inverse problem discusses the impact of different measurement errors and measurement point positions on the inverse result. As demonstrated by empirical analysis, the proposed method remains highly precise despite the presence of measurement errors or the close distance of measurement point position from the boundary angular point angle.

Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/7432138.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/7432138.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7432138

DOI: 10.1155/2019/7432138

Access Statistics for this article

More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:complx:7432138