MOFSRank: A Multiobjective Evolutionary Algorithm for Feature Selection in Learning to Rank
Fan Cheng,
Wei Guo and
Xingyi Zhang
Complexity, 2018, vol. 2018, 1-14
Abstract:
Learning to rank has attracted increasing interest in the past decade, due to its wide applications in the areas like document retrieval and collaborative filtering. Feature selection for learning to rank is to select a small number of features from the original large set of features which can ensure a high ranking accuracy, since in many real ranking applications many features are redundant or even irrelevant. To this end, in this paper, a multiobjective evolutionary algorithm, termed MOFSRank, is proposed for feature selection in learning to rank which consists of three components. First, an instance selection strategy is suggested to choose the informative instances from the ranking training set, by which the redundant data is removed and the training efficiency is enhanced. Then on the selected instance subsets, a multiobjective feature selection algorithm with an adaptive mutation is developed, where good feature subsets are obtained by selecting the features with high ranking accuracy and low redundancy. Finally, an ensemble strategy is also designed in MOFSRank, which utilizes these obtained feature subsets to produce a set of better features. Experimental results on benchmark data sets confirm the advantage of the proposed method in comparison with the state-of-the-arts.
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2018/7837696.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2018/7837696.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:7837696
DOI: 10.1155/2018/7837696
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().