A New Robust Classifier on Noise Domains: Bagging of Credal C4.5 Trees
Joaquín Abellán,
Javier G. Castellano and
Carlos J. Mantas
Complexity, 2017, vol. 2017, 1-17
Abstract:
The knowledge extraction from data with noise or outliers is a complex problem in the data mining area. Normally, it is not easy to eliminate those problematic instances. To obtain information from this type of data, robust classifiers are the best option to use. One of them is the application of bagging scheme on weak single classifiers. The Credal C4.5 (CC4.5) model is a new classification tree procedure based on the classical C4.5 algorithm and imprecise probabilities. It represents a type of the so-called credal trees . It has been proven that CC4.5 is more robust to noise than C4.5 method and even than other previous credal tree models. In this paper, the performance of the CC4.5 model in bagging schemes on noisy domains is shown. An experimental study on data sets with added noise is carried out in order to compare results where bagging schemes are applied on credal trees and C4.5 procedure. As a benchmark point, the known Random Forest (RF) classification method is also used. It will be shown that the bagging ensemble using pruned credal trees outperforms the successful bagging C4.5 and RF when data sets with medium-to-high noise level are classified.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2017/9023970.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2017/9023970.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9023970
DOI: 10.1155/2017/9023970
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().