Optimal Policies for the Pricing and Replenishment of Fashion Apparel considering the Effect of Fashion Level
Qi Chen,
Qi Xu and
Wenjie Wang
Complexity, 2019, vol. 2019, 1-12
Abstract:
Fashion apparel, with short product lifecycles and highly volatile demand, requires careful attention during both the initial ordering periods before the selling season and during the selling season, with its decisions regarding price and replenishment. Using Pontryagin’s maximum principle method, this study investigates the problem of the dynamic pricing strategy and replenishment cycle for fashion apparel by considering the effect of fashion level on demand. First, we provide a framework for fashion apparel by formulating a model that includes both price and demand at different fashion levels. We then provide an algorithm to derive the optimal dynamic pricing strategy and replenishment cycle. Numerical examples and sensitivity analyses of the main system parameters are provided to demonstrate the obtained results, which form the basis for managerial insights. It is shown that the apparel retailer has three types of optimal dynamic pricing strategies and that the optimal strategy is independent of the replenishment cycle. The apparel retailer is able to realize the profit advantage of a continuously variable price policy by adjusting the sales price periodically.
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://downloads.hindawi.com/journals/8503/2019/9253605.pdf (application/pdf)
http://downloads.hindawi.com/journals/8503/2019/9253605.xml (text/xml)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hin:complx:9253605
DOI: 10.1155/2019/9253605
Access Statistics for this article
More articles in Complexity from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().