EconPapers    
Economics at your fingertips  
 

Remarks on derivations on semiprime rings

Mohamad Nagy Daif and Howard E. Bell

International Journal of Mathematics and Mathematical Sciences, 1992, vol. 15, 1-2

Abstract:

We prove that a semiprime ring R must be commutative if it admits a derivation d such that (i) x y + d ( x y ) = y x + d ( y x ) for all x , y in R , or (ii) x y − d ( x y ) = y x − d ( y x ) for all x , y in R . In the event that R is prime, (i) or (ii) need only be assumed for all x , y in some nonzero ideal of R .

Date: 1992
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://downloads.hindawi.com/journals/IJMMS/15/863506.pdf (application/pdf)
http://downloads.hindawi.com/journals/IJMMS/15/863506.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jijmms:863506

DOI: 10.1155/S0161171292000255

Access Statistics for this article

More articles in International Journal of Mathematics and Mathematical Sciences from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jijmms:863506