EconPapers    
Economics at your fingertips  
 

Forecasting Oil Price by Hierarchical Shrinkage in Dynamic Parameter Models

Yuntong Liu, Yu Wei, Yi Liu and Wenjuan Li

Discrete Dynamics in Nature and Society, 2020, vol. 2020, 1-12

Abstract:

The aim of this paper is to forecast monthly crude oil price with a hierarchical shrinkage approach, which utilizes not only LASSO for predictor selection, but a hierarchical Bayesian method to determine whether constant coefficient (CC) or time-varying parameter (TVP) predictive regression should be employed in each out-of-sample forecasting step. This newly developed method has the advantages of both model shrinkage and automatic switch between CC and TVP forecasting models; thus, this may produce more accurate predictions of crude oil prices. The empirical results show that this hierarchical shrinkage model can outperform many commonly used forecasting benchmark methods, such as AR, unobserved components stochastic volatility (UCSV), and multivariate regression models in forecasting crude oil price on various forecasting horizons.

Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://downloads.hindawi.com/journals/DDNS/2020/6640180.pdf (application/pdf)
http://downloads.hindawi.com/journals/DDNS/2020/6640180.xml (text/xml)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hin:jnddns:6640180

DOI: 10.1155/2020/6640180

Access Statistics for this article

More articles in Discrete Dynamics in Nature and Society from Hindawi
Bibliographic data for series maintained by Mohamed Abdelhakeem ().

 
Page updated 2025-03-19
Handle: RePEc:hin:jnddns:6640180