Linear Regressions, Shorts to Long
Toru Kitagawa and
Masayuki Sawada
No 747, Discussion Paper Series from Institute of Economic Research, Hitotsubashi University
Abstract:
We study the identification problem of the linear long regression coefficients by data combination. Unlike the usual data combination problem, we consider combining multiple short regressions of the same outcome with different regressors. For this conceptually novel problem, we provide partial identification results for the long regression coefficients under a restriction on the unknown correlation structure. Specifically, we employ an elliptic constraint from the relations among the explained variations of the regressions to induce the bounds.
Keywords: Data combination; Linear regression; Elliptic constraint (search for similar items in EconPapers)
Pages: 23 pages
Date: 2023-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/80139/DP747.pdf
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hit:hituec:747
Access Statistics for this paper
More papers in Discussion Paper Series from Institute of Economic Research, Hitotsubashi University Contact information at EDIRC.
Bibliographic data for series maintained by Hiromichi Miyake ().