Modelización de los factores que afectan al fraude fiscal con técnicas de minería de datos: aplicación al Impuesto de la Renta en España
César Pérez López (),
María Jesús Delgado Rodríguez () and
de Lucas Santos Sonia ()
Additional contact information
César Pérez López: Instituto de Estudios Fiscales- Universidad Rey Juan Carlos
María Jesús Delgado Rodríguez: Universidad Rey Juan Carlos
Hacienda Pública Española / Review of Public Economics, 2023, vol. 246, issue 3, 137-164
Abstract:
This paper presents a proposal to model and predict the behavior of Personal Income Tax (IRPF) tax-payers with data mining techniques. Decision trees and discriminant analysis are combined to quantify each taxpayer's propensity to fraud using the tax components with the highest incidence of fraud. The model achieves an average efficiency in predictions of more than 89%, allowing respondents to be segmented by level of propensity to fraud. The proposal can be used in the audit and control process carried out by the Tax Agency.
Keywords: Tax fraud; Data mining; Personal income tax; Prediction. (search for similar items in EconPapers)
JEL-codes: C38 C55 H26 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://hpe-rpe.org/wp-admin/admin-ajax.php?juwpfi ... 9b0a179b3a&preview=1 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hpe:journl:y:2023:v:246:i:3:p:137-164
Access Statistics for this article
More articles in Hacienda Pública Española / Review of Public Economics from IEF Contact information at EDIRC.
Bibliographic data for series maintained by Miguel Gómez de Antonio ().