EconPapers    
Economics at your fingertips  
 

Fuel price forecasting combining wavelet neural network and adaptive differential evolution

Carlos Eduardo Klein, Wesley Vieira Da Silva, Claudimar Pereira Da Veiga, Viviana Cocco Mariani and Leandro Dos Santos Coelho

International Journal of Business Forecasting and Marketing Intelligence, 2020, vol. 6, issue 3, 167-185

Abstract: Once economies are not linearly changing, significant research efforts have been devoted to developing efficient forecasting methods. Artificial neural network (ANN) has been widely applied in forecasting and pattern recognition tasks. Recently, the wavelet neural networks have become a promising tool for nonlinear mapping. In this context, the main of this paper is to forecast the future price for gasoline, diesel, liquid petroleum gas (LGP), liquid natural gas (LNG), and finally sugar cane ethanol. This study differs from previous contributing in literature with three aspects: 1) integration of wavelet analysis and computational intelligence techniques, which are limited in the fuels price forecasting area and are required for assessing the forecasting model for real-life applications; 2) to rank six different neural network structures among the fuels to point the best ones; 3) encourage a discussion about the role of oil price forecasting in wider economic analysis.

Keywords: artificial neural network; wavenet; differential evolution; oil price; gasoline price; forecasting. (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=111370 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijbfmi:v:6:y:2020:i:3:p:167-185

Access Statistics for this article

More articles in International Journal of Business Forecasting and Marketing Intelligence from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijbfmi:v:6:y:2020:i:3:p:167-185