EconPapers    
Economics at your fingertips  
 

An adaptive and interactive recommendation model for consumers' behaviours prediction

Mohamed Ramzi Haddad and Hajer Baazaoui

International Journal of Data Mining, Modelling and Management, 2018, vol. 10, issue 1, 89-111

Abstract: Recommendation algorithms aim at predicting customers' interests and purchases using different ideas and hypotheses. Consequently, system designers need to choose the recommendation approach that is the most suitable with regard to their products' nature and consumers' behaviours within the application field. In this paper, we propose an adaptive recommendation model based on statistical modelling to assist consumers facing choice overload by predicting their interests and consumption behaviours. We also propose a dynamic variant of the model taking into account the recommendations' time-value during interactive online recommendation scenarios. Our proposal has endured a two-fold evaluation. First, we conducted an offline comparative study on the MovieLens recommendation dataset in order to assess our model's performance with regard to several widely adopted recommendation techniques. Then, the model was evaluated within a real time online news recommendation platform to highlight its adaptability, scalability and efficiency in a highly interactive application domain.

Keywords: adaptive recommendation model; interactive recommendation; continuous recommendation; consumer behaviour modelling and prediction. (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.inderscience.com/link.php?id=89628 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:10:y:2018:i:1:p:89-111

Access Statistics for this article

More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().

 
Page updated 2025-03-19
Handle: RePEc:ids:ijdmmm:v:10:y:2018:i:1:p:89-111