GACC: genetic algorithm-based categorical data clustering for large datasets
Abha Sharma and
R.S. Thakur
International Journal of Data Mining, Modelling and Management, 2017, vol. 9, issue 4, 275-297
Abstract:
Many operators of genetic algorithm (GA) are discussed in the literature such as crossover operators, fitness functions, mutation, etc. A range of GA-based clustering methods have been proposed to obtain optimal solutions. In this paper, most recent GA-based hard and fuzzy clustering which is specifically designed for categorical data is discussed. In general, all GA-based clustering algorithms generate the initial population randomly, which may produce biased results. This paper proposed GACC algorithm with new population initialisation criteria. In this population creation mechanism, the usual random selection of chromosomes is replaced with more refined and distinct clusters as chromosomes. This mechanism prohibits the user to initialise the population size as well. Experimental results show the better clustering for the pure categorical dataset. The work finishes off with some open challenges and ways to improve clustering of categorical data.
Keywords: clustering; categorical data; genetic algorithm; genetic operators; initial population; population size. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=88413 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:ijdmmm:v:9:y:2017:i:4:p:275-297
Access Statistics for this article
More articles in International Journal of Data Mining, Modelling and Management from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().