Recommendation of hashtags in social Twitter network
King Chau Cheung and
Tommy King Yin Cheung
International Journal of Data Analysis Techniques and Strategies, 2017, vol. 9, issue 3, 222-236
Abstract:
The development of microblogging services has resulted in the growth of short-text social networking on the internet which open the door to many useful applications such as reputation management and marketing. With more than millions of tweets generated each day, Twitter is one of the largest microblogging sites which allow users to use hashtags to categorise and facilitate the search of tweets which share the same tag. By using a popular or appropriate hashtag in tweets, users could reach a large set of target followers. In this paper, we propose a novel hidden topic model for content-based hashtag recommendation. By ranking the occurrence probability of hashtags of a given topic, a set of hashtag candidates was selected for further analysis. The proposed method is demonstrated with tweets collected from Twitter's API for 19 consecutive periods. The advantage of our model is a combination of the use of topic distribution and term selection probability for hashtag recommendation.
Keywords: hashtag recommendation; topic models; Twitter; short-text classification. (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.inderscience.com/link.php?id=86631 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ids:injdan:v:9:y:2017:i:3:p:222-236
Access Statistics for this article
More articles in International Journal of Data Analysis Techniques and Strategies from Inderscience Enterprises Ltd
Bibliographic data for series maintained by Sarah Parker ().