Bayesian inference for the mixed conditional heteroskedasticity model
Luc Bauwens and
Jeroen Rombouts
No 06-07, Cahiers de recherche from HEC Montréal, Institut d'économie appliquée
Abstract:
We estimate by Bayesian inference the mixed conditional heteroskedasticity model of (Haas, Mittnik, and Paolella 2004a). We construct a Gibbs sampler algorithm to compute posterior and predictive densities. The number of mixture components is selected by the marginal likelihood criterion. We apply the model to the SP500 daily returns.
Keywords: Finite mixture; ML estimation; bayesian inference; value at risk. (search for similar items in EconPapers)
JEL-codes: C11 C15 C32 (search for similar items in EconPapers)
Pages: 26 pages
Date: 2006-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.hec.ca/iea/cahiers/2006/iea0607_jrombouts.pdf (application/pdf)
Related works:
Journal Article: Bayesian inference for the mixed conditional heteroskedasticity model (2007)
Working Paper: Bayesian inference for the mixed conditional heteroskedasticity model (2007)
Working Paper: Bayesian inference for the mixed conditional heteroskedasticity model (2005) 
Working Paper: Bayesian inference for the mixed conditional heteroskedasticity model (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:iea:carech:0607
Ordering information: This working paper can be ordered from
Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7
The price is Free.
Access Statistics for this paper
More papers in Cahiers de recherche from HEC Montréal, Institut d'économie appliquée Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7. Contact information at EDIRC.
Bibliographic data for series maintained by Patricia Power ().