Asymptotic theory for nonparametric regression with spatial data
Peter Robinson ()
Additional contact information
Peter Robinson: Institute for Fiscal Studies and London School of Economics
No CWP11/11, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well as non-identically distributed observations. Instead of mixing conditions, a (possibly non-stationary) linear process is assumed for disturbances, allowing for long range, as well as short-range, dependence, while decay in dependence in explanatory variables is described using a measure based on the departure of the joint density from the product of marginal densities. A basic triangular array setting is employed, with the aim of covering various patterns of spatial observation. Sufficient conditions are established for consistency and asymptotic normality of kernel regression estimates. When the cross-sectional dependence is sufficiently mild, the asymptotic variance in the central limit theorem is the same as when observations are independent; otherwise, the rate of convergence is slower. We discuss application of our conditions to spatial autoregressive models, and models defined on a regular lattice.
Date: 2011-02-20
New Economics Papers: this item is included in nep-ecm, nep-geo and nep-ure
References: Add references at CitEc
Citations: View citations in EconPapers (61)
Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp1111.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:11/11
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().