EconPapers    
Economics at your fingertips  
 

Nonparametric identification and estimation of nonclassical errors-in-variables models without additional information

Xiaohong Chen (), Yingyao Hu and Arthur Lewbel
Additional contact information
Yingyao Hu: Institute for Fiscal Studies and Johns Hopkins University

No CWP18/07, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies

Abstract:

This paper considers identification and estimation of a nonparametric regression model with an unobserved discrete covariate. The sample consists of a dependent variable and a set of covariates, one of which is discrete and arbitrarily correlates with the unobserved covariate. The observed discrete covariate has the same support as the unobserved covariate, and can be interpreted as a proxy or mismeasure of the unobserved one, but with a nonclassical measurement error that has an unknown distribution. We obtain nonparametric identification of the model given monotonicity of the regression function and a rank condition that is directly testable given the data. Our identification strategy does not require additional sample information, such as instrumental variables or a secondary sample. We then estimate the model via the method of sieve maximum likelihood, and provide root-n asymptotic normality and semiparametric efficiency of smooth functionals of interest. Two small simulations are presented to illustrate the identification and the estimation results.

Date: 2007-08-13
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp1807.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 500 Can't connect to cemmap.ifs.org.uk:80 (No such host is known. )

Related works:
Working Paper: Nonparametric Identification and Estimation of Nonclassical Errors-in-Variables Models Without Additional Information (2007) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:18/07

Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Access Statistics for this paper

More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().

 
Page updated 2025-03-24
Handle: RePEc:ifs:cemmap:18/07