Sparse models and methods for optimal instruments with an application to eminent domain
Alexandre Belloni,
D. Chen,
Victor Chernozhukov and
Christian Hansen
Additional contact information
Alexandre Belloni: Institute for Fiscal Studies
D. Chen: Institute for Fiscal Studies
Christian Hansen: Institute for Fiscal Studies and Chicago GSB
No CWP31/10, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
We develop results for the use of LASSO and Post-LASSO methods to form first-stage predictions and estimate optimal instruments in linear instrumental variables (IV) models with many instruments, p, that apply even when p is much larger than the sample size, n. We rigorously develop asymptotic distribution and inference theory for the resulting IV estimators and provide conditions under which these estimators are asymptotically oracle-efficient. In simulation experiments, the LASSO-based IV estimator with a data-driven penalty performs well compared to recently advocated many-instrument-robust procedures. In an empirical example dealing with the effect of judicial eminent domain decisions on economic outcomes, the LASSO-based IV estimator substantially reduces estimated standard errors allowing one to draw much more precise conclusions about the economic effects of these decisions. Optimal instruments are conditional expectations; and in developing the IV results, we also establish a series of new results for LASSO and Post-LASSO estimators of non-parametric conditional expectation functions which are of independent theoretical and practical interest. Specifically, we develop the asymptotic theory for these estimators that allows for non-Gaussian, heteroscedastic disturbances, which is important for econometric applications. By innovatively using moderate deviation theory for self-normalized sums, we provide convergence rates for these estimators that are as sharp as in the homoscedastic Gaussian case under the weak condition that log p = o(n 1/3). Moreover, as a practical innovation, we provide a fully data-driven method for choosing the user-specified penalty that must be provided in obtaining LASSO and Post-LASSO estimates and establish its asymptotic validity under non-Gaussian, heteroscedastic disturbances.
Date: 2010-10-22
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (45)
Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp3110.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 500 Can't connect to cemmap.ifs.org.uk:80 (No such host is known. )
Related works:
Working Paper: Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain (2015) 
Journal Article: Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:31/10
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().