Nonparametric identification and semiparametric estimation of classical measurement error models without side information
Susanne Schennach and
Yingyao Hu
No CWP40/12, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
Virtually all methods aimed at correcting for covariate measurement error in regressions rely on some form of additional information (e.g. validation data, known error distributions, repeated measurements or instruments). In contrast, we establish that the fully nonparametric classical errors-in-variables mode is identifiable from data on the regressor and the dependent variable alone, unless the model takes a very specific parametric form. The parametric family includes (but is not limited to) the linear specification with normally distributed variables as a well-known special cast. This result relies on standard primitive regularity conditions taking the form of smoothness constraints and nonvanishing characteristic functions assumptions. Our approach can handle both monotone and nonmonotone specifications, provided the latter oscillate a finite number of times. Given that the very specific unidentified parametric functional form is arguably the exception rather than the rule, this identification result should have a wide applicability. It leads to a new perspective on handling measurement error in nonlinear and nonparametric models, opening the way to a novel and practical approach to correct for measurement error in data sets where it was previously considered impossible (due to the lack of additional information regarding the measurement error). We suggest an estimator based on non/semi-parametric maximum likelihood, derive its asymptotic properties and illustrate the effectiveness of the method with a simulation study and an application to the relationship between firm investment behaviour and market value, the latter being notoriously mismeasured.
Date: 2012-12-03
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.cemmap.ac.uk/wps/cwp401212.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found
Related works:
Journal Article: Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information (2013) 
Working Paper: Nonparametric identification and semiparametric estimation of classical measurement error models without side information (2012) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:40/12
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().