Double machine learning for treatment and causal parameters
Victor Chernozhukov,
Denis Chetverikov (),
Mert Demirer,
Esther Duflo,
Christian Hansen and
Whitney Newey
Additional contact information
Denis Chetverikov: Institute for Fiscal Studies and UCLA
Mert Demirer: Institute for Fiscal Studies
Esther Duflo: Institute for Fiscal Studies
No CWP49/16, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
Most modern supervised statistical/machine learning (ML) methods are explicitly designed to solve prediction problems very well. Achieving this goal does not imply that these methods automatically deliver good estimators of causal parameters. Examples of such parameters include individual regression coffiecients, average treatment e ffects, average lifts, and demand or supply elasticities. In fact, estimators of such causal parameters obtained via naively plugging ML estimators into estimating equations for such parameters can behave very poorly. For example, the resulting estimators may formally have inferior rates of convergence with respect to the sample size n caused by regularization bias. Fortunately, this regularization bias can be removed by solving auxiliary prediction problems via ML tools. Speci ficially, we can form an efficient score for the target low-dimensional parameter by combining auxiliary and main ML predictions. The efficient score may then be used to build an efficient estimator of the target parameter which typically will converge at the fastest possible 1/v n rate and be approximately unbiased and normal, allowing simple construction of valid con fidence intervals for parameters of interest. The resulting method thus could be called a "double ML" method because it relies on estimating primary and auxiliary predictive models. Such double ML estimators achieve the fastest rates of convergence and exhibit robust good behavior with respect to a broader class of probability distributions than naive "single" ML estimators. In order to avoid overfi tting, following [3], our construction also makes use of the K-fold sample splitting, which we call cross- fitting. The use of sample splitting allows us to use a very broad set of ML predictive methods in solving the auxiliary and main prediction problems, such as random forests, lasso, ridge, deep neural nets, boosted trees, as well as various hybrids and aggregates of these methods (e.g. a hybrid of a random forest and lasso). We illustrate the application of the general theory through application to the leading cases of estimation and inference on the main parameter in a partially linear regression model and estimation and inference on average treatment eff ects and average treatment e ffects on the treated under conditional random assignment of the treatment. These applications cover randomized control trials as a special case. We then use the methods in an empirical application which estimates the e ffect of 401(k) eligibility on accumulated financial assets.
Keywords: Neyman; orthogonalization; cross-fi t; double machine learning; debiased machine learning; orthogonal score; efficient score; post-machine-learning and post-regularization inference; random forest; lasso; deep learning; neural nets; boosted trees; efficiency; optimality. (search for similar items in EconPapers)
Date: 2016-09-27
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)
Downloads: (external link)
https://www.ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found (https://www.ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf [302 Found]--> https://ifs.org.uk/uploads/cemmap/wps/cwp491616.pdf)
Related works:
Working Paper: Double machine learning for treatment and causal parameters (2016) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:49/16
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().