Query Frequency based View Selection
Mohammad Haider Syed and
T.V. Vijay Kumar
Additional contact information
Mohammad Haider Syed: Saudi Electronic University, Saudi Arabia
T.V. Vijay Kumar: School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
International Journal of Business Analytics (IJBAN), 2017, vol. 4, issue 1, 36-55
Abstract:
View selection deals with the selection of appropriate sets of views capable of improving the response times for queries while conforming to space constraints. Materializing all views is infeasible, as the number of possible views is exponential with respect to the number of dimensions and, thus, would not fit within the available storage space. Further, optimal view selection is an NP-Complete problem. Thus, the only remaining alternative is to select a subset of views that reduce the query response time and fit within the available space for materialization. The most fundamental greedy view selection algorithm HRUA considers the size parameter for computing the Top-K views for materialization. In each iteration, it computes the benefit, with respect to size, of all non-selected views, and selects the one entailing the highest benefit for materialization. Though these selected views may be beneficial in respect of their size, they may not be capable of answering large numbers of future queries thereby becoming an unnecessary space overhead. Existing query frequency based view selection algorithms, which address this problem, have been compared in this paper. Experimental results show that each of these algorithms, in comparison to HRUA, are able to select fairly good quality views that provide answers to comparatively greater numbers of queries. Materializing these selected views would facilitate the business decision making process.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/IJBAN.2017010103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jban00:v:4:y:2017:i:1:p:36-55
Access Statistics for this article
International Journal of Business Analytics (IJBAN) is currently edited by John Wang
More articles in International Journal of Business Analytics (IJBAN) from IGI Global
Bibliographic data for series maintained by Journal Editor ().