A New Sensor-Based Spatial OLAP Architecture Centered on an Agricultural Farm Energy-Use Diagnosis Tool
Sandro Bimonte,
Marilys Pradel,
Daniel Boffety,
Aurelie Tailleur,
Géraldine André,
Rabi Bzikha and
Jean-Pierre Chanet
Additional contact information
Sandro Bimonte: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Aubière, France
Marilys Pradel: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Montoldre, France
Daniel Boffety: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Montoldre, France
Aurelie Tailleur: ARVALIS - Institut du végétal, Service Agronomie Economie Environnement La Jaillière, La Chapelle St Sauveur, France
Géraldine André: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Montoldre, France
Rabi Bzikha: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Aubière, France
Jean-Pierre Chanet: Irstea, l'Unité Recherche Technologies et Systèmes d'information pour les Agrosystèmes (TSCF), Aubière, France
International Journal of Decision Support System Technology (IJDSST), 2013, vol. 5, issue 4, 1-20
Abstract:
Agricultural energy consumption is an important environmental and social issue. Several diagnosis tools have been proposed to define indicators for analyzing the large-scale energy consumption of agricultural farm activities (year, farm, production activity, etc.). In Bimonte, Boulil, Chanet and Pradel (2012), the authors define (i) new appropriate indicators to analyze agricultural farm energy-use performance on a detailed scale and (ii) show how Spatial Data Warehouse (SDW) and Spatial OnLine Analytical Processing (SOLAP) GeoBusiness Intelligence (GeoBI) technologies can be used to represent, store, and analyze these indicators by simultaneously producing graphical and cartographic reports. These GeoBI technologies allow for the analysis of huge volumes of georeferenced data by providing aggregated numerical values visualized by means of interactive tabular, graphical, and cartographic displays. However, existing data collection systems based on sensors are not well adapted for agricultural data. In this paper, the authors show the global architecture of our GeoBI solution and highlight the data collection process based on agricultural ad hoc sensor networks, the associated transformation and cleaning operations performed by means of Spatial Extract Transform Load (ETL) tools, and a new implementation of the system using a web-services-based loosely coupled SOLAP architecture to provide interoperability and reusability of the complex multi-tier GeoBI architecture. Moreover, the authors detail how the energy-use diagnosis tool proposed in Bimonte, Boulil, Chanet and Pradel (2012) theoretically fits with the sensor data and the SOLAP approach.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/ijdsst.2013100101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jdsst0:v:5:y:2013:i:4:p:1-20
Access Statistics for this article
International Journal of Decision Support System Technology (IJDSST) is currently edited by Shaofeng Liu
More articles in International Journal of Decision Support System Technology (IJDSST) from IGI Global
Bibliographic data for series maintained by Journal Editor ().