Application of Machine Learning Algorithms to a Well Defined Clinical Problem: Liver Disease
Sakshi Takkar,
Aman Singh and
Babita Pandey
Additional contact information
Sakshi Takkar: Lovely Professional University, Phagwara, India
Aman Singh: Department of Computer Science and Engineering, Lovely Professional University, Phagwara, India
Babita Pandey: Department of Computer Applications, Lovely Professional University, Phagwara, India
International Journal of E-Health and Medical Communications (IJEHMC), 2017, vol. 8, issue 4, 38-60
Abstract:
Liver diseases represent a major health burden worldwide. Machine learning (ML) algorithms have been extensively used to diagnose liver disease. This study accordingly aims to employ various individual and integrated ML algorithms on distinct liver disease datasets for evaluating the diagnostic performances, to integrate dimensionality reduction method with the ML algorithms for analyzing variation in results, to find the best classification model and to analyze the merits and demerits of these algorithms. KNN and PCA-KNN emerged to be the top individual and integrated models. The study also concluded that one specific algorithm can't show best results for all types of datasets and integrated models not always perform better than the individuals. It is observed that no algorithm is perfect and performance of an algorithm totally depends on the dataset type and structure, its number of observations, its dimensions and the decision boundary.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 18/IJEHMC.2017100103 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jehmc0:v:8:y:2017:i:4:p:38-60
Access Statistics for this article
International Journal of E-Health and Medical Communications (IJEHMC) is currently edited by Joel J.P.C. Rodrigues
More articles in International Journal of E-Health and Medical Communications (IJEHMC) from IGI Global
Bibliographic data for series maintained by Journal Editor ().