Complex Terminology Extraction Model from Unstructured Web Text Based Linguistic and Statistical Knowledge
Fethi Fkih and
Mohamed Nazih Omri
Additional contact information
Fethi Fkih: MARS Research Unit, Faculty of sciences of Monastir, University of Monastir, Monastir, Tunisia
Mohamed Nazih Omri: MARS Research Unit, Faculty of sciences of Monastir, University of Monastir, Monastir, Tunisia
International Journal of Information Retrieval Research (IJIRR), 2012, vol. 2, issue 3, 1-18
Abstract:
Textual data remain the most interesting source of information in the web. In the authors’ research, they focus on a very specific kind of information namely “complex terms”. Indeed, complex terms are defined as semantic units composed of several lexical units that can describe in a relevant and exhaustive way the text content. In this paper, they present a new model for complex terminology extraction (COTEM), which integrates linguistic and statistical knowledge. Thus, the authors try to focus on three main contributions: firstly, they show the possibility of using a linear Conditional Random Fields (CRF) for complex terminology extraction from a specialized text corpus. Secondly, prove the ability of a Conditional Random Field to model linguistic knowledge by incorporating grammatical observations in the CRF’s features. Finally, the authors present the benefits gained by the integration of statistical knowledge on the quality of the terminology extraction.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijirr.2012070101 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jirr00:v:2:y:2012:i:3:p:1-18
Access Statistics for this article
International Journal of Information Retrieval Research (IJIRR) is currently edited by Zhongyu Lu
More articles in International Journal of Information Retrieval Research (IJIRR) from IGI Global
Bibliographic data for series maintained by Journal Editor ().