A Hybrid Multilayer Perceptron Neural Network for Direct Marketing
M. Govindarajan and
Rm. Chandrasekaran
Additional contact information
M. Govindarajan: Annamalai University, India
Rm. Chandrasekaran: Annamalai University, India
International Journal of Knowledge-Based Organizations (IJKBO), 2012, vol. 2, issue 3, 63-73
Abstract:
Data Mining is the use of algorithms to extract the information and patterns derived by the knowledge discovery in database process. It is often referred to as supervised learning because the classes are determined before examining the data. In many data mining applications that address classification problems, feature and model selection are considered as key tasks. That is, appropriate input features of the classifier must be selected from a given set of possible features and structure parameters of the classifier must be adapted with respect to these features and a given data set. This paper describes feature selection and model selection simultaneously for Multilayer Perceptron (MLP) classifiers. In order to reduce the optimization effort, various techniques are integrated that accelerate and improve the classifier significantly. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: Direct Marketing in Customer Relationship Management. It is shown that, compared to earlier MLP technique, the run time is reduced with respect to learning data and with validation data for the proposed Multilayer Perceptron (MLP) classifiers. Similarly, the error rate is relatively low with respect to learning data and with validation data in direct marketing dataset. The algorithm is independent of specific applications so that many ideas and solutions can be transferred to other classifier paradigms.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://services.igi-global.com/resolvedoi/resolve. ... 018/ijkbo.2012070104 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igg:jkbo00:v:2:y:2012:i:3:p:63-73
Access Statistics for this article
International Journal of Knowledge-Based Organizations (IJKBO) is currently edited by John Wang
More articles in International Journal of Knowledge-Based Organizations (IJKBO) from IGI Global
Bibliographic data for series maintained by Journal Editor ().